• 福禄克旗下其他公司:
  • Fluke
  • Fluke Biomedical
  • Fluke Networks
  • Fluke Process Instruments
查看更多福禄克品牌
Accelix Amprobe Beha-Amprobe Comark Emaint Landauer Pacific Laser Systems Pomona RaySafe Schad
主页
Precision, Performance, Confidence.
美国福禄克(FLUKE) – 计量校准
  • 注册
  • 登录
  • Contact Us

CN - Chinese, Simplified (简体中文) [Change]

 

Get Quote

Overview of 8588A and 8558A calibration support processes and equipment requirements

Document(s): 
application/pdf icon Overview of 8588A and 8558A calibration support processes and equipment requirements (382.12 KB)

8588A in metrology lab

The Fluke Calibration 8588A Reference Multimeter and 8558A 8.5-Digit Multimeter are class leading 8.5-digit precision multimeter instruments featuring superior accuracy and long-term stability over a wide measurement range, with an intuitive user interface and a color display.

With more than 12 measurement functions, including the new digitize voltage, digitize current, capacitance, RF power, and external shunts for dc and ac current, the 8588A helps you consolidate your lab’s cost of test into a single measurement instrument. Its superb analog performance is augmented by Fluke Calibration’s new high-speed system design and the industry’s fastest direct digitizing capability, enabling significant throughput increase for many automated systems demanding a combination of the highest speed and best accuracy. Both models share the majority of calibration processes and support requirements, with some differences due to differing performance and functionality between the models. This application note provides an introductory overview of these calibration adjustment and performance verification processes; together with recommended calibration equipment requirements based on those used in the Fluke factory and service centers, and as described in detail in the instrument service manuals.

8588A and 8558A Bench Multimeters

Product specifications and calibration uncertainties

At the Fluke factory and service centers both 8588A and 8558A are calibrated and performance is verified on the same calibration systems with essentially identical calibration uncertainties. Those calibration systems, supporting traceability and metrology processes and resulting calibration uncertainties, must meet the most demanding requirements for the higher performance 8588A model. Because the lower performance 8558A model is calibrated and verified on the same system, the same system related uncertainties are applied to both models. Therefore, the difference between corresponding absolute and relative specifications is similar for each model, as evidenced in Table 1. For example: see 0.1 µV/V of reading for the dc voltage function 10 V range at 95 % confidence level. Note that the stated absolute uncertainty is the RSS rootsum-square combination of relative uncertainty specification and applicable calibration uncertainty (converted to the same confidence level), and that the applicable calibration uncertainty also includes the effect of the device under test (DUT). Thus, simply considering the arithmetic relative/absolute differences in Table 1 may not in all cases give identical results for each model.

Depending on application needs, some 8558A users may only be concerned with relative specifications or may tolerate wider absolute specifications. Therefore, these users may choose to trade off wider calibration uncertainties for simpler or cheaper calibration standards support processes, or to use external calibration providers not able to offer such tight uncertainties.

Table 1. 8588A and 8558A Key Specifications Comparison

Function 8588A
± (µX/X of reading + µX/X of range)
8558A
± (µX/X of reading + µX/X of range)
  95% 99% 95% 99%
DC voltage 10 V Relative 2.7 + 0.05 3.5 + 0.06 4.0 + 0.06 5.2 + 0.08
Absolute 2.8 + 0.05 3.6 + 0.06 4.1 + 0.06 5.3 + 0.08
AC voltage 10 V, 1 kHz Relative 60 + 5 77 + 6.5 80 + 10 103 + 13
Absolute 64 + 5 83 + 6.5 90 + 10 116 + 13
Resistance 10 kΩ Relative 7 + 0.5 9 + 0.6 10 + 0.6 13 + 0.7
Absolute 7.2 + 0.5 9.2 + 0.6 10 + 0.6 13 + 0.7
DC current 10 mA Relative 8 + 4 10 + 5 10 + 5 13 + 6
Absolute 8.9 + 4 11 + 5 11 + 5 14 + 6
AC current 10 mA, 1 kHz Relative 250 + 50 323 + 62 300 + 100 387 + 129
Absolute 260 + 50 335 + 65 310 + 100 400 + 129
Frequency BNC, 1 kHz Relative 0.5 uHz/Hz 0.5 uHz/Hz 0.5 uHz/Hz 0.5 uHz/Hz
Temperature PRT 100 Ω Type K, S, J, B, R, E, L, U, C, N*, T* Relative ± 5 mK ± 5 mK ± 5 mK ± 5 mK
Capacitance 1 uF Relative 400 + 100 516 + 129 N/A N/A
Absolute 400 + 100 516 + 129 N/A N/A

95 % and 99 % 1 year relative accuracy specification. Fluke Calibration guarantees to specification at 99 % confidence interval k=2.58.
*Types N and T are ± 5 mK for ≥ 120 K (-123C)

Calibration architecture and adjustment process

In common with most modern test and measurement instruments, the 8588A and 8558A multimeters employ entirely digital alignment and calibration adjustment mechanisms, storing calibration correction factor data in internal nonvolatile memory. Both multimeter models have two sets of calibration correction stores; named Certified and Baseline. The Certified corrections are copied to the Baseline stores during factory calibration. The products leave the factory with Certified stores active and the accompanying calibration certificate refers to performance in this configuration. Baseline stores would normally only be overwritten after repair. At routine recalibrations (annual or biannual, etc.) only the Certified stores are updated; the Baseline is not changed. This enables users and metrologists to employ the Baseline corrections to monitor long-term drift of the multimeter unaffected by the changes to the Certified stores from routine calibration adjustment. Also, one can prove that the multimeter performance was unaffected by transit to and from routine calibration events or transit to and from locations where it is used as a standard to calibrate and certify other equipment.

Calibration adjustment involves a limited sequence of points (functions and ranges) at which the multimeter is adjusted directly against external traceable standards. On completion of the adjustment sequence, and making use of the correction data obtained, the remaining functions and ranges are automatically adjusted by internal transfers controlled by the instrument. For example, the capacitance function obtains capacitance readings from the relationship between capacitance and voltage dV/dt measured under constant current charging conditions. Except for the 1 nF range, calibration data for capacitance ranges are derived internally from the calibration data obtained during adjustment of the resistance function current sources, the relevant dc V measurement ranges and the internal master frequency reference. Note that the calibration adjustment sequence must be completed with all required adjustment points adjusted, otherwise some functions and ranges will be left in an un-adjusted state The calibration adjustment process may be carried out manually via the front panel, or under computer control via the remote interface(s). When executed manually, the multimeter leads the user through the adjustment point sequence, prompting for application of the necessary input. When the sequence is completed and correction data is stored, the multimeter is fully calibrated, with measurement performance meeting specification on all ranges and functions. However, to demonstrate traceability for all functions and ranges, the multimeter must also be measured at the recommended performance verification test points on all functions against traceably calibrated standards.

The factory and service center automated calibration systems use the multimeter remote interface. For users with appropriate equipment and capability wishing to perform their own calibrations, the 8588A and 8558A Service Manual contains full details of the equipment required, measurement points and step-by-step instructions duplicating the factory procedures for calibration adjustment and performance verification.

Calibration standards requirements and recommended equipment

A summary of the recommended calibration standards equipment items for 8588A and 8558A calibration and verification is listed in Table 2. To achieve the required low uncertainties, the equipment must be traceably characterized to determine actual output values at the required measurement points. This data is used to correct for error from nominal of the calibration stimulus applied during the multimeter calibration adjustment and performance verification processes, achieving uncertainties much smaller than published equipment specifications would otherwise suggest. Full details of the equipment requirements (sufficient to allow substitution of appropriate alternatives), adjustment and verification points appear in the 8588A and 8558A Service Manual.

Table 2 shows that some equipment is not required for calibration adjustment, used only for performance verification. Therefore, in practice, it is convenient to arrange the equipment in two groups or systems, corresponding to adjustment plus verification and verification only usage. The factory calibration systems are arranged in this manner, shown in the photograph with adjust/ verify part one on the left and verify part two on the right.

Table 2. 8588A and 8558A recommended calibration equipment summary

Item 8588A 8558A Calibration Adjustment Performance Verification Functions/Parameters calibrated/verified
5730A Calibrator ● ● ● ● DC V, AC V, Resistance, DCI , AC I, Digitize DC V and DC I
5725A Amplifier ● ● ● ● High Voltage AC V, DC I up to 10 A, AC I
5522A Calibrator [1] ● ●   ● Counter, Capacitance
52120A Amplifier ●     ● DC I and AC I at 30 A
742A 1 Ω Standard ● ● ● ● Resistance
1 GΩ Standard [2] ● ● ● ● Resistance
Ohm Lab 110 10 GΩ Standard [3] ● ●   ● Resistance
IET Labs/GR 1403-A 1000pF Air Capacitor [4] ●   ●   Capacitance
10 MHz Frequency [5] Standard ● ● ● ● Counter
[1] Fitted with any oscilloscope calibration option, for counter function verification up to 100 MHz
[2] Part of 8588A-7000K Cal Kit
[3] Optional Equipment. See text for explanation.
[4] Or low frequency characterized silver mica/fused silica device
[5] Also used as 5522A External Frequency Reference
 

 

Performance verification points used in the Fluke factory and service center calibration systems, and data appearing in the calibration certificates delivered from the factory, include additional points beyond the minimum needed to traceably confirm complete and correct adjustment of all functions and ranges following the calibration adjustment process outlined above. These additional points provide extra information some users may find helpful and informative. They are not essential and may be optionally omitted, reducing the calibration time, support complexity and costs. The Service Manual calibration procedure includes and identifies these additional ‘optional’ points. For example, measurement at 10 GΩ, hence noting the 10 GΩ standard resistor in Table 2 as optional equipment.

Factory automated calibration system

8588A and 8558A calibration and performance verification compared to 8508A

Calibration support requirements for the 8588A and 8558A models are similar to those for the predecessor 8508A Reference Multimeter. Users and metrologists familiar with 8508A support will recognize the similarity in recommended calibration equipment between the 8508A (characterized 5720A and 5725A, 1 GΩ Standard, etc.) and the list in Table 2. The need for additional equipment is due to the expanded features and capabilities of the 8588A and 8558A.

However, compared to 8508A, the 8588A and 8558A have entirely different design architecture, circuitry, internal construction and calibration adjustment mechanisms. Despite the greater functionality, the 8588A and 8558A have approximately one third of the number of calibration adjustment points compared to 8508A. This significant improvement is made by the adjustment/alignment processes common to both 8588A and 8558A avoiding the duplication inherent in the 8508A, where all ranges are individually adjusted.

If all the recommended points are tested, full verification of the 8588A requires approximately 600 points (fewer for the 8558A), around 2.5 times as many compared to 8508A. Despite the points count differences, the overall calibration adjustment and verification times for the 8588A and 8558A are similar to the 8508A. However, the number of essential 8588A and 8558A verification points is less when the optional points are discounted. These essential verification points are those necessary to confirm full and correct completion of the adjustment and internal alignment processes and specification compliance. They also confirm traceability and include the typical cardinal points at which users and metrologists expect to see data in a calibration certificate and often rely on to establish their own traceability and uncertainty budgets.

The verification points listed in the recommended procedures in the 8588A and 8558A Service Manual are chosen based on the multimeter hardware design architecture, component and circuit characteristics, and calibration adjustment processes—including the internal alignment phase (calibration data derivation) that takes place automatically on completion of adjustments made against external traceable standards and calibration stimuli. Likewise, the inclusion and selection of points listed as optional.

Consider the following example of optional points: The recommended verification procedure includes measurement of all ranges at 1x range and optionally at 2x range. Depending on their application needs, measurement capabilities, policies and attitudes, etc., some users and metrologists may choose to retain the 1x and 2x on the primary ranges but omit all other 2x points in favour of faster process times and lower support costs, etc.

Similarly, some users and metrologists may choose to omit any other points listed as optional. Omitting all optional points significantly reduces points count, by around 20 %. The result is overall calibration adjustment and verification (certification) time reduction in comparison to 8508A.

Summary

In summary, customers and users with appropriate equipment, traceability and metrological capabilities can self-support, calibrate and certify the superior performance and functionalities of the 8588A and 8558A multimeters. Please refer to the the 8588A and 8558A Service Manual for full equipment and procedure details. Go to the Fluke Calibration website for further 8588A and 8558A product information, precision DMM calibration information, application notes and on-demand web-seminars.

  • 首页
  • 产品
    • 新产品
    • 电学计量校准
      • 标准器
      • 校准器
      • 高精度数字表
      • 电学校准软件
    • 射频校准
      • 射频参考标准
      • 射频校准配件
      • 射频校准软件
    • 数据采集和通用测试仪器
      • 台式万用表
      • 数据采集
      • 数据采集软件
    • 温度校准
      • 温度基标准
        • ITS-90 固定点容器
        • 标准铂电阻温度计 (SPRT)
        • 维修仪器
        • 液氮比较校准仪
        • 测温电桥
        • 标准电阻
      • 校准恒温槽
        • 袖珍型校准恒温槽
        • 标准型校准恒温槽
        • 特殊应用型恒温槽
        • 校准恒温槽配件
        • 校准恒温槽控制器
        • 校准恒温槽液
      • 工业温度校准仪
        • 现场计量炉
        • 计量炉
        • 手持干井校准仪
        • 现场干式校准
        • 微型恒温槽
        • 红外校准器
        • 热电偶炉
        • 双插块干井
        • 零点干井
      • 二等标准温度计/温度传感器
        • 铂电阻温度计 (PRT)
        • 热敏电阻
        • 热电偶
      • 测温仪
      • 热工多产品校准器
      • 温度校准系统及软件
    • 湿度校准
      • 湿度发生器
      • 湿度数据记录仪和监测仪
    • 压力计量校准
      • 基准级活塞式压力计
        • NMI 活塞式压力计
        • 绝压活塞式压力计
        • 高压力气动活塞压力计
        • 液压活塞式压力计
        • 活塞式压力计附件
      • 数字压力控制器/校准器
        • 低压控制器/校准仪
        • 气动压力控制器/校准仪
        • 高压气动控制器/校准仪
        • 液压控制器/校准器
      • 压力检测器
        • 低压检测仪
        • 数字压力计
        • 参考压力检测仪
      • 活塞式压力计
        • 气压活塞压力计
        • 油活塞压力计
        • 水活塞压力计
        • 高压液压自动测试仪
        • 活塞压力计附件附件
      • 手动压力校准及精密压力测量
        • 压力校准仪
        • 气压控制
        • 液压比较器/泵
      • Handheld Pressure Calibrators
      • 大气数据校准
      • 环境检测仪
      • 手动调压装置及增压泵
      • 定制压力校准系统
      • 压力校准软件
    • 流量校准
      • 气体流量标准
      • 气体流量配件
      • GFS动态质量流量基准
      • 流量校准软件
    • 过程校准仪器
      • 过程温度校准器
        • 手持式温度校准器
        • 干体式温度校准器和微型恒温槽
        • 精密数字温度计
        • 温度探头
        • 红外校准器
        • 带数据记录功能的温湿度仪
      • 压力校准器
        • 数字压力校准器
        • 手持式压力校准器
        • 活塞式压力计
        • 精密数字压力计
        • 手泵
      • 热工多产品校准器
      • 便携式过程校准器
      • 过程校准软件
    • 校准软件
      • MET/CAL® 软件
      • MET/CAL® 金牌支持
      • 资产管理软件
      • 温度校准系统及软件
      • 压力校准软件
      • 流量校准软件
      • 通用校准软件
    • 售后服务
    • 所有校准仪器
  • 售前咨询
    • 联系方式
    • 索取报价
    • 请求演示
    • 产品咨询
    • Certified Pre-Owned Equipment
    • General Services Administration (GSA)
    • Financing Program
    • National Stock Numbers (NSNs)
    • Payment Options and Tax Info
  • 新闻及动态
    • 新闻发布
    • 促销活动
    • Metrology Salary Survey
  • 培训与活动
    • Conferences and Exhibitions
    • 培训课程
    • User Group Meetings
  • 资料下载
    • Education Hub
    • 关于校准
    • 应用文章
    • 产品资料
    • 用户手册
    • 视频、音频及虚拟演示
    • Blog
    • 产品样本(简体中文)
    • 常见问题(简体中文)
    • 应用文章(简体中文)
    • 用户手册(简体中文)
  • 售后服务
    • Service Request (RMA)
    • Service Plans
    • 知识库
    • 认证
    • Calibration Certificates
    • Community Forum
    • My MET/SUPPORT
      • Activate
      • Procedures
      • Software
      • Technical Bulletins
      • Priority Support
      • Manuals
    • 产品手册
    • 安全数据表 (SDS)
    • 安全通告
    • 软件下载
    • 软件激活
  • 关于我们
    • 联系我们
    • 访问我们
    • 加入我们
    • 福禄克计量校准部简介
      • DH Instruments 压力和流量校准
      • Pressurements 压力校准
      • Ruska 压力校准
    • 福禄克其他部门
    • 商业准则
    • 常见问题
主页|文献|应用文章|电学计量校准|应用笔记|Overview of 8588A and 8558A calibration support processes and equipment requirements

在线客服
©1995-2022 Fluke Corporation

Secondary menu

  • Disclaimer
  • 隐私声明
  • 使用条款
  • Terms and Conditions of Sale