• 福禄克旗下其他公司:
  • Fluke
  • Fluke Biomedical
  • Fluke Networks
  • Fluke Process Instruments
查看更多福禄克品牌
Accelix Amprobe Beha-Amprobe Comark Emaint Landauer Pacific Laser Systems Pomona RaySafe Schad
主页
Precision, Performance, Confidence.
美国福禄克(FLUKE) – 计量校准
  • 注册
  • 登录
  • Contact Us

CN - Chinese, Simplified (简体中文) [Change]

 

New definition of the kilogram (the SI unit of mass) and other SI unit redefinitions in 2019

Document(s): 
application/pdf icon New definition of the kilogram (the SI unit of mass) and other SI unit redefinitions in 2019 (183.56 KB)

SI Units that Change Because of The New Definition of the Kilogram

The kilogram and other SI unit changes on Metrology Day, 2019

On World Metrology Day, May 20, 2019, new values were implemented for the International System of Units (SI) base units of the kilogram, kelvin, mole and ampere, and the derived units of the volt and ohm. These values are based on redefinitions of the Planck constant, elementary charge, the Boltzmann constant and the Avogadro constant. The changes are based on the evolution of the definition of the kilogram, the SI unit of mass, which has progressed from a physical artifact—held at the International Bureau of Weight and Measures (BIPM) since 1889—to a constant of nature, Planck’s constant, that can be accessed anywhere in the universe. The new definition of the kilogram benefits the entire world in potentially having better access to realization of the kilogram, and eliminates the risks associated with maintaining a standard that is based on a sole artifact.

As a result of the redefinitions, some measurement reference standards must be adjusted to the new value of the definition. Other measurement reference standards may account for the redefined value by incorporating an additional contributor to their measurement uncertainty evaluations. This application note summarizes the changes being made to SI units and provides guidance on how to implement them.

SI units have a history of change

This is not the first time that an adjustment to the measurement system has been made. For example, in 1990 the volt was defined to be based on the Josephson effect and the ohm on the Quantum Hall effect. At that time, the shift1 of the volt in the United States was 9.26 x 10-6 (9.26 parts per million or 0.000926%)1 which was significant because a large percentage of laboratories owned devices that were capable of this accuracy, such as the Fluke 5700A High Performance Multifunction Calibrator. The 1990 volt definition exceeds the performance specification of this product on the 11 volt and 22 volt ranges, so a Fluke 5700A that was calibrated to the United States representation of the volt in 1989 would be out of tolerance as compared to the 1990 volt. The Fluke 5700A not only was used at many National Metrology Institutes (NMIs), but it was used in primary, secondary, and working level calibration laboratories and in some cases, test laboratories around the world, as the Fluke 5730A is today.

The adjustments to the volt on May 20, 2019 is nearly 100 times less in magnitude than the 1990 adjustment, and as a result a smaller number of organizations will be affected. However, metrologists should be aware of the redefinition and its implications on their calibration laboratory.

Experiments to transition to the new definition of the kilogram and the impact on other SI definitions

In order to transition from the International Prototype kilogram (IPK) to a constant of nature, a series of experiments have been conducted in collaboration with the top NMIs in the world. The experiments involved realizing the kilogram through the Kibble (watt) balance and through means of x-ray-crystal-density. As a result of the experiments, the following constants will be updated on May 20, 2019:

  • The Planck constant h is exactly 6.626 070 15 ×10-34 joule second
  • The elementary charge e is exactly 1.602 176 634 ×10-19 coulomb
  • The Boltzmann constant k is exactly 1.380 649 ×10-23 joule per kelvin
  • The Avogadro constant NA is exactly 6.022 140 76 ×1023 mol-1

The SI will continue to have the same seven base units, but the new definition of the kilogram will now be expressed in terms of the Planck constant; the ampere will be defined in terms of the elementary charge; the kelvin will be defined in terms of the Boltzmann constant; and the mole will be defined in terms of the Avogadro constant.

Measurement system adjustments as a result of constant redefinitions

The Volt V

The most significant shift in any of the measurement units is the volt. The updates to the Planck Constant and the Fundamental Electron Charge will cause a shift3 of 0.107 x 10-6 or 0.107 parts per million (ppm). The new value for the Josephson constant (2e/h) is slightly smaller than the 1990 value, so a device that is measured to the 2019 value will be larger than the 1990 value by approximately 0.1 ppm8. Calibration laboratories that operate a Josephson Voltage System (JVS) to directly realize the volt will be required to update the value for the Josephson constant in their system operating software. We advise these laboratories to learn how to update the software before May 20, 2019, but not complete the update until that time. The only other commercial instrument that can observe this adjustment is the Fluke 732 series of Direct Voltage Standards. When a Fluke 732 is calibrated against a JVS, the uncertainty produced for the calibration is typically between 0.06 ppm to 0.1 ppm. While the adjusted value will equal the calibration uncertainty for the 732 series instruments, the specification component of long-term stability is much larger than this, and even when maintaining a control chart that utilizes linear regression, the value associated with this adjustment is absorbed in the linear regression uncertainty4.

The International Committee of Weights and Measures (CIPM) Consultative Committee for Electricity and Magnatism (CCEM) has produced a guideline which states that no action is required if your voltage related uncertainties are larger than 0.25 ppm5. If your uncertainty for the volt is less than 0.25 ppm and you do not have direct access to a JVS, we recommend that you add the 0.107 ppm adjustment quantity to your uncertainty analysis.

The Ohm Ω

The adjustment to the ohm is much smaller than the volt, approximately 0.02 ppm3. If your laboratory is operating a Quantum Hall based resistance standard (QHR), the value for the Von Klitzing Constant should be updated in the operating system software in the same manner as described for the volt. However, since most calibration laboratories do not operate a QHR, the value of this adjustment is generally insignificant as it is half the calibration uncertainty that NIST provides for a Thomas 1 ohm calibration6. The guidance from the CCEM is that no action is required for resistance uncertainties that are larger than 0.05 ppm.

The Kilogram kg

On May 20, 2019, calibrations that are traceable to the IPK will have an increased expanded uncertainty of 0.02 ppm7, which is less than half the uncertainty of a NIST calibration at 1 kg, so this adjustment is insignificant to industrial calibration laboratories.

The Pascal Pa

The fundamental SI unit of pressure, the Pascal is expressed in N/m2 which can be further reduced to kg/m•s2. Since the meter and second are not being redefined in 2019, the only change is based on the kilogram, which again is approximately 0.02 ppm. The most accurate calibrations for pressure are on the order of ppm, so again, this adjustment is insignificant.

The Kelvin K

Although the definition of the SI unit for thermodynamic temperature, the kelvin, is being redefined in terms of the Boltzmann constant, the definitions of ITS-90 are not changing at this time, so any calibration that is performed in accordance with ITS-90 or PLTS-2000 will not change.

Recommended Resources

Printable World Metrology Day Posters

About Calibration page where you can learn more about the International System of Units (SI)

Recommended Products

732C and 734C DC Voltage Reference Standards

5730A High Performance Multifunction Calibrator

References

1 John Fluke MFg. Co. Inc. Application Note “Changing to the 1990 Volt and Ohm” 1989

2 Resolution 1 of the 26th CGPM (2018)
3 BIPM “Mise en pratique for the definition of the ampere and other electric units in the SI” Draft Version 1.0 8/12/2017

4 Kletke, Ray “Maintaining 10 VDC at 0.3 PPM or Better in your Laboratory” 1996 NCSL Conference Session 3C

5 CCEM “Guidelines for Implementation of the ‘Revised SI’” Consultative Committee for Electricity and Magnetism, BIPM CCEM/19-04.2_b 08/12/2017 Version 1.0

6 Retrieved from the CMC’s for NIST at www.bipm.org on 21 April 2019

7 BIPM “Mise en pratique for the definition of the kilogram in the SI” Draft version 11.3 20/07/2018 8 The term Parts Per Million (PPM) is no longer an acceptable way to express values of quantities, but is used because the audience understands the term well and it improves comprehension of the application note.

  • 首页
  • 产品
    • 新产品
    • 电学计量校准
      • 标准器
      • 校准器
      • 高精度数字表
      • 电学校准软件
    • 射频校准
      • 射频参考标准
      • 射频校准配件
      • 射频校准软件
    • 数据采集和通用测试仪器
      • 台式万用表
      • 数据采集
      • 数据采集软件
    • 温度校准
      • 温度基标准
        • ITS-90 固定点容器
        • 标准铂电阻温度计 (SPRT)
        • 维修仪器
        • 液氮比较校准仪
        • 测温电桥
        • 标准电阻
      • 校准恒温槽
        • 袖珍型校准恒温槽
        • 标准型校准恒温槽
        • 特殊应用型恒温槽
        • 校准恒温槽配件
        • 校准恒温槽控制器
        • 校准恒温槽液
      • 工业温度校准仪
        • 现场计量炉
        • 计量炉
        • 手持干井校准仪
        • 现场干式校准
        • 微型恒温槽
        • 红外校准器
        • 热电偶炉
        • 双插块干井
        • 零点干井
      • 二等标准温度计/温度传感器
        • 铂电阻温度计 (PRT)
        • 热敏电阻
        • 热电偶
      • 测温仪
      • 热工多产品校准器
      • 温度校准系统及软件
    • 湿度校准
      • 湿度发生器
      • 湿度数据记录仪和监测仪
    • 压力计量校准
      • 基准级活塞式压力计
        • NMI 活塞式压力计
        • 绝压活塞式压力计
        • 高压力气动活塞压力计
        • 液压活塞式压力计
        • 活塞式压力计附件
      • 数字压力控制器/校准器
        • 低压控制器/校准仪
        • 气动压力控制器/校准仪
        • 高压气动控制器/校准仪
        • 液压控制器/校准器
      • 压力检测器
        • 低压检测仪
        • 数字压力计
        • 参考压力检测仪
      • 活塞式压力计
        • 气压活塞压力计
        • 油活塞压力计
        • 水活塞压力计
        • 高压液压自动测试仪
        • 活塞压力计附件附件
      • 手动压力校准及精密压力测量
        • 压力校准仪
        • 气压控制
        • 液压比较器/泵
      • Handheld Pressure Calibrators
      • 大气数据校准
      • 环境检测仪
      • 手动调压装置及增压泵
      • 定制压力校准系统
      • 压力校准软件
    • 流量校准
      • 气体流量标准
      • 气体流量配件
      • GFS动态质量流量基准
      • 流量校准软件
    • 过程校准仪器
      • 过程温度校准器
        • 手持式温度校准器
        • 干体式温度校准器和微型恒温槽
        • 精密数字温度计
        • 温度探头
        • 红外校准器
        • 带数据记录功能的温湿度仪
      • 压力校准器
        • 数字压力校准器
        • 手持式压力校准器
        • 活塞式压力计
        • 精密数字压力计
        • 手泵
      • 热工多产品校准器
      • 便携式过程校准器
      • 过程校准软件
    • 校准软件
      • MET/CAL® 软件
      • MET/CAL® 金牌支持
      • 资产管理软件
      • 温度校准系统及软件
      • 压力校准软件
      • 流量校准软件
      • 通用校准软件
    • 售后服务
    • 所有校准仪器
  • 售前咨询
    • 联系方式
    • 索取报价
    • 请求演示
    • 产品咨询
    • Certified Pre-Owned Equipment
    • General Services Administration (GSA)
    • Financing Program
    • National Stock Numbers (NSNs)
    • Payment Options and Tax Info
  • 新闻及动态
    • 新闻发布
    • 促销活动
    • Metrology Salary Survey
  • 培训与活动
    • Conferences and Exhibitions
    • 培训课程
    • User Group Meetings
  • 资料下载
    • Education Hub
    • 关于校准
    • 应用文章
    • 产品资料
    • 用户手册
    • 视频、音频及虚拟演示
    • Blog
    • 产品样本(简体中文)
    • 常见问题(简体中文)
    • 应用文章(简体中文)
    • 用户手册(简体中文)
  • 售后服务
    • Service Request (RMA)
    • Service Plans
    • 知识库
    • 认证
    • Calibration Certificates
    • Community Forum
    • My MET/SUPPORT
      • Activate
      • Procedures
      • Software
      • Technical Bulletins
      • Priority Support
      • Manuals
    • 产品手册
    • 安全数据表 (SDS)
    • 安全通告
    • 软件下载
    • 软件激活
  • 关于我们
    • 联系我们
    • 访问我们
    • 加入我们
    • 福禄克计量校准部简介
      • DH Instruments 压力和流量校准
      • Pressurements 压力校准
      • Ruska 压力校准
    • 福禄克其他部门
    • 商业准则
    • 常见问题
主页|文献|应用文章|一般校准/计量主题|应用笔记|New definition of the kilogram (the SI unit of mass) and other SI unit redefinitions in 2019

在线客服
©1995-2022 Fluke Corporation

Secondary menu

  • Disclaimer
  • 隐私声明
  • 使用条款
  • Terms and Conditions of Sale